Synergism of antifungal activity between mitochondrial respiration inhibitors and kojic acid.
نویسندگان
چکیده
Co-application of certain types of compounds to conventional antimicrobial drugs can enhance the efficacy of the drugs through a process termed chemosensitization. We show that kojic acid (KA), a natural pyrone, is a potent chemosensitizing agent of complex III inhibitors disrupting the mitochondrial respiratory chain in fungi. Addition of KA greatly lowered the minimum inhibitory concentrations of complex III inhibitors tested against certain filamentous fungi. Efficacy of KA synergism in decreasing order was pyraclostrobin > kresoxim-methyl > antimycin A. KA was also found to be a chemosensitizer of cells to hydrogen peroxide (H₂O₂), tested as a mimic of reactive oxygen species involved in host defense during infection, against several human fungal pathogens and Penicillium strains infecting crops. In comparison, KA-mediated chemosensitization to complex III inhibitors/H₂O₂ was undetectable in other types of fungi, including Aspergillus flavus, A. parasiticus, and P. griseofulvum, among others. Of note, KA was found to function as an antioxidant, but not as an antifungal chemosensitizer in yeasts. In summary, KA could serve as an antifungal chemosensitizer to complex III inhibitors or H₂O₂ against selected human pathogens or Penicillium species. KA-mediated chemosensitization to H₂O₂ seemed specific for filamentous fungi. Thus, results indicate strain- and/or drug-specificity exist during KA chemosensitization.
منابع مشابه
Kojic acid-derived tyrosinase inhibitors: synthesis and bioactivity
Tyrosinase is a key enzyme for melanin biosynthesis, catalyzing the oxidation of L-tyrosine to L-dopaquinone. The tyrosinase inhibition is an effective approach to control hyperpigmentation in human skin and enzymatic browning in fruits and vegetables. Kojic acid is a naturally-occurring tyrosinase inhibitor which has been clinically used to treat the hyperpigmentation of skin. However, kojic a...
متن کاملIn vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme
Objective(s): Tyrosinase is a key enzyme in pigment synthesis. Overproduction of melanin in parts of the skin results in hyperpigmentation diseases. This enzyme is also responsible for the enzymatic browning in fruits and vegetables. Thus, its inhibitors are of great importance in the medical, cosmetic and agricultural fields. Materials and Methods: A series of twelve kojic acid derivatives wer...
متن کاملEffect of Anti Browning Agents on Partial Purified Polyphenol Oxidase of Hawthorn (Crataegus Spp
Objective: Polyphenol oxidase or PPO (EC 1.14.18.1) is considered the enzyme responsible for quality deterioration and browning in different fruits during postharvest period. The objective of this study was to evaluate the antibrowning (inhibition of polyphenol oxidase activity) effect of Cysteine, Ascorbic acid, citric acid, kojic acid and glycine at two different pH (6 and 7) in hawthorn. Me...
متن کاملEffect of Anti Browning Agents on Partial Purified Polyphenol Oxidase of Hawthorn (Crataegus Spp
Objective: Polyphenol oxidase or PPO (EC 1.14.18.1) is considered the enzyme responsible for quality deterioration and browning in different fruits during postharvest period. The objective of this study was to evaluate the antibrowning (inhibition of polyphenol oxidase activity) effect of Cysteine, Ascorbic acid, citric acid, kojic acid and glycine at two different pH (6 and 7) in hawthorn. Me...
متن کاملAcetylacetonate Complexes as New Corrosion Inhibitors in Phosphoric Acid Media: Inhibition and Synergism Study
The corrosion inhibition performance of acetylacetonate complexes of zinc(II), manganese(II), cobalt(II) and copper(II) on the mild steel substrate in 1M H3PO4 was studied using DC polarization. It was seen that the mentioned complexes decreased corrosion rate of mild steel in phosphoric acid media due to the adsorption on metal surface. The potential of mild steel shifted toward more active po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 18 2 شماره
صفحات -
تاریخ انتشار 2013